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In this paper we show the results of the numerical simulation of a “standard” reaction process obtained by
a “non standard” system: a reactant oscillator(a harmonic oscillator with an energy threshold) weakly inter-
acting with a unidimensional tent map. According to the paper by M. Bianucci, R. Mannella, B.J. West, and P.
Grigolini [Phys. Rev. E51, 3002(1995)], the action of such a map on the reactant system should be equiva-
lent, in some sense, to that of a thermal bath, where the values of the temperature and of the friction depend on
the normalized correlation function and on the response function of the map. Here this prediction is confirmed
by the numerical simulation. The numerical results are fitted very well by an Arrhenius law with the predicted
temperature and friction values. Notice that this is a strict test of the theory because the reaction rate strongly
depends on the fine level statistics, i.e., a small deviation in the cue of the distribution would result in a large
deviation in the value of the rate.
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I. INTRODUCTION

The rate of a real standard chemical reaction process in a
solvent is well described by the Arrhenius-like structure

k = A expH−
Eb

kBT
J , s1d

whereEb is the minimum energy required for the reaction to
take place,T the solvent temperature, andkB the Boltzmann
constant. This “transition state structure” is essentially de-
rived by establishing a contact with equilibrium statistical
mechanics[1] and by assuming, according to the transition
state theory, that the population of all reactants can be de-
scribed by the canonical equilibrium ensemble.

The usual picture of a reaction process is that of a particle
(the reactant) in a potential well that reacts escaping from the
well by jumping over a barrier of heightEb (see Fig. 1). The
solvent is assumed to be a thermostat, which is the source of
the temperatureT and of the statistical properties that give
rise to the Arrhenius-like structure of Eq.(1).

Kramers, in a well-known work[2], obtained Eq.(1)
starting from the Langevin dynamical picture:

ẋ = v,

mv̇ = −
]Usxd

]x
− mgv + fstd, s2d

whereUsxd is a reaction potential characterized by the bar-
rier Eb (Fig. 1) and fstd is a Gaussian white noise, with
vanishingstatistical mean value, defined by

kfstdfssdl = 2mgkBTdst − sd. s3d

Kramers demonstrates[2] that when the temperaturekBT of
Eq. (3) is low if compared with the value of the energy

barrierEb, then the reaction rate is well described by Eq.(1).
In the limit of low friction or viscosity, where Brownian

forces do not alter substantially the energy of the reactants
during the course of the reaction, Kramers predicts that the
constant “A,” and then the rate, will increase proportionally
with viscosity. In contrast, in the limit of high viscosity,
Kramers predicts that reaction rates are inversely propor-
tional to g.

The Kramers theory applies to a very large variety of
cases, stemming from physics, chemical-physics, biology,
etc., e.g., photoisomerization reactions like trans-stilbene and
related compounds in liquidn-alkanes andn-alkanols over a
wide pressure range[3], diffusional barrier crossing in two-
state protein folding reactions, like the folding dynamics of
the cold shock protein CspB[4] or the formation ofb sheet
or a helix [5], catalytic reaction rates at solid surfaces[6,7],
etc.

Kramers also obtained the analytical explicit value of the
constant “A” for the case of low friction and the case of
intermediate and strong friction. He could not obtain the ana-
lytic solution for the turnover regime between these two
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FIG. 1. Schematic drawing of a typical reaction potential in
arbitrary units. The reactants are the particles with “coordinate”x
less thanx*. The reactants move under the influence of the potential
Usxd and of the thermal bath. When a reactant reaches the pointx*
the chemical reaction takes place and it disappears. Thusx* is an
absorbing point andEb is the corresponding energy barrier.
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cases, and we had to wait more than 50 years to have a quite
general unified treatment[8].

In the present paper we limit ourself to the underdamped
limit (low friction), for which the Kramers result is

A = g
IsEbd
kBT

v0

2p
, s4d

whereIsEd is the action, defined by

IsEd ; R mvdx, s5d

and v0/2p is the frequency at the bottom of the potential
well:

v0

2p
; UvsId

2p
U

I=0
, with

vsId
2p

;
]E

]I
. s6d

Actually, from Eq.(2), in the underdamped regime, a more
accurate expression for the reaction ratek can be obtained
[9] fb;1/kBT,Ib; IsEbdg:

k = gkBTFE
0

Ib

dI expf− bEsIdgE
I

Ib

dI8
vsI8d
2p

expfbEsI8dg
I8 G ,

s7d

which reduces to the Kramers expression in the limit of high
activation energysbEb@1d.

In substance, the Langevin picture consists of a way of
representing a thermostat. In fact in Eq.(2) the thermostat is
represented by the two forces that act on the reactant oscil-
lator: the friction −mgv and the Gaussian stochastic force
fstd. The Gaussianicity of the stochastic force ensures the
“correct” fluctuation properties of the system, the friction is
responsible for its relaxation behavior, and the intensity of
the stochastic force, assigned by the relaxation-fluctuation
relation in Eq.(3), introducesby handthe temperature in the
system. Therefore the stochastic Langevin picture rests on a
phenomenological(not microscopic) description of the ther-
mostat. We could also say that the Langevin equation defines
what a thermostat is. Thus any “real” microscopic descrip-
tion of a thermostat must be statistically equivalent to the
Langevin picture from the point of view of the system of
interest(here the reactant). With the present paper we want
to check how good the microscopic model for the thermostat
proposed in paper[10] is by studying the reaction process
induced by the action of such a model over a reactant oscil-
lator.

Notice that about 20 years ago it was shown that if we let
interact in a special way the system of interest with variables
whose dynamics depends in a proper way on the kinetic en-
ergy of the system, we have(in the ergodic case) that the
distribution of the system of interest “relaxes”(in some
sense) to the canonical equilibrium distribution[11–13].
Moreover, the relaxation process follows the “standard” fluc-
tuations dissipation rules. Thus these artificial deterministic
systems, now called Nosé-Hoover systems, are very impor-
tant in the field of molecular dynamics, where they can effi-
ciently replace the action of a thermostat[14]. More recently
a number of modifications to the Nosé-Hoover systems have

been proposed[15–21]. Moreover, in[22] a generalization to
non-Hamiltonian systems of the usual Hamiltonian phase
space analysis has been applied to these models, to include
them in the general framework of the standard statistical me-
chanics theory.

However, though these systems are very useful in molecu-
lar simulations, it is a difficult task to link them to what
should be a real microscopic model, for two main reasons:

(1) the temperature is still inserted by hand, and
(2) in the “extended” phase space, where we can recover

a Hamiltonian structure, the dynamics of the “thermal bath”
depends directly on the kinetic energy of the relevant system,
instead of depending on the coordinate variables as in real
systems.

Our approach here and in[10] is quite different: our task
is not to find a competitive model to be used in computer
molecular dynamics simulations, but to contribute to shed-
ding a light on understanding the link between the dynamical
properties of the deterministic microscopic systems and the
dynamical and equilibrium properties emerging when ob-
serving them at a macroscopic scale. More precisely, we are
looking for the key properties of the microscopic “irrelevant”
system, and of the interaction of it with the variables of
interest, necessary for the setup of a standard fluctuation-
dissipation process. A first step toward this goal was already
done in papers[23–25], where, however, two main points
make them weak:

(1) the dynamics of the “thermal bath” depends on the
velocity variable of the system of interest(instead of depend-
ing on the coordinate, as in any reasonable interaction poten-
tial); and

(2) there is not a defined time scale for the system of
interest.

II. A SHORT REVIEW

In paper[10], which reports and generalizes the results of
papers[26–29], the Fokker-Planck or Langevin type trans-
port equation from the underlying microscopic dynamics is
explored, exploiting the simple case of a system composed
of a relevant one degree of freedom oscillator coupled to an
irrelevant multidegree of freedom system through a weak
interaction of strengthD [10]:

ẋ = v,

mv̇ = −
]Vsxd

]x
− Dj,

j̇ = Fsj,p,− Dxd,

ṗ = Gsj,p,− Dxd, s8d

whereVsxd is the potential of the oscillator of interest[as we
will show later, it is practically indistinguishable fromUsxd
of Eq. (2)] and j, ps=p1, . . . ,pn−1d are the variables of the
n-dimensional irrelevant system that we call “booster”
[10,26–29] (the “thermostat”).
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From Eq.(8) we see that the booster exerts an action on
the oscillator of interest through the term −Dj /m (action).
The oscillator reacts back(reaction), and this is expressed by
the dependence ofF and G on the term −Dx. If the third
argument of the functionsF andG is equal to zero we say
that the booster is “unperturbed,” otherwise we say that the
booster is “perturbed.” Thus in Eq.(8) the perturbation is
given by the term −Dx.

The general structure of Eq.(8) includes the case of
Hamiltonian boosters weakly interacting with the system of
interest, where the interaction potential is expanded in Taylor
series up to the first term in the coupling parameterD (linear
interaction). Of course, the Hamiltonian case is the most in-
teresting one and it was analyzed in paper[10]. Following a
procedure close to that in[10], this case is also explored in
more recent papers[30–32].

The structure of Eq.(8) is also compatible with non-
Hamiltonian dynamical systems, often used to model the dy-
namics at “mesoscopic” scale. Given a specific non-
Hamiltonian system compatible with Eq.(8), it could be also
possible to apply the procedure of paper[22] to construct the
distribution function sampled by the variables of interest, and
verify the emergence of standard equilibrium statistical prop-
erties. Note, however, that our approach is quite general but
perturbative, this means that the distribution function of the
booster(that depends on the position in the phase space of
the variables of the system of interest) must be always close
to the unpertururbed one. This condition must be checked
case by case in the phase space analysis of the equilibrium
distribution.

The booster, to act as a thermostat, has to fulfill two im-
portant dynamical properties[10]:

(i) Its correlation function, in the unperturbed case, must
decay in a finite time, i.e., ifwstd is the normalized unper-
turbed autocorrelation function of the variablej,

wstd ;
kjstdjs0dl0

kj2l0
, s9d

we need to have

t ; E
0

`

wstddt , `; s10d

where the symbolk¯l0 indicates the average over the unper-
turbed sD=0d equilibrium distribution of the booster.
Throughout this paper we assume, without any loss of gen-
erality, that the unperturbed average of the variablej of the
booster vanishes, i.e.,kjl0=0.

(ii ) The booster responds linearly(in a statistical sense)
to a weak perturbation. More precisely, we assume that if at
time t=0 we perturb the booster with an external fieldKstd
[Kstd is in place of the perturbation −Dx in Eq. (8)], the
average ofj moves from zero to a value that can be well
approximated by a linear function of the perturbation, i.e.,

kjlKstd < E
0

t

SsudKst − uddu s11d

whereSsud is the response function andk¯lKstd indicates the
average at timet over the distribution of the perturbed
booster, starting from the unperturbedsK=0d equilibrium
distribution att=0. This means that if we perturb the booster
with a constantfield of intensityK si.e., K does not depend
on timed, we can write kjlKstd=Kxstd, where xstd
;e0

t Ssuddu. The susceptibilityxstd is a function that goes
from zero, at the initial timet=0, to a valuex;xs`d at time
t=`. Introducing the functioncstd, defined by

xstd = f1 − cstdgx, s12d

it is evident thatcs0d=1, cs`d=0, andSstd=−x]cstd /]t.
Notice that the linear response of a “chaotic” booster to a

weak perturbation is a quite general property and, as shown
in papers[33,34], the response function can usually be evalu-
ated following an approach “a la Kubo”[35].

There are three cases where the procedure of paper[10]
yields to a standard statistical mechanics:

(1) Large separation between the time scale of the
booster(order oft) and the typical oscillation times1/vd of
the system of interest, i.e.,vt!1; Vsxd: any; number of
degree of freedom of the booster: any.

(2) Vsxd=v2x2/2, i.e., the system of interest is a har-
monic oscillator;v andt : any (notice, however, that a reso-
nancev;t could break the assumption of weak interaction
between the booster and the system of interest); number of
degree of freedom of the booster: any.

(3) Large number of degree of freedom of the booster;v
andt : any; Vsxd: any.

In this paper we assume to be in the first case. This means
that the present procedure could be applied to a wide variety
of complex reaction dynamics, with real potentials, such as,
for example, protein folding reactions. However, for the sake
of simplicity, we will limit ourself considering only the case
of harmonic potentials.

At this point, as it is shown in[10], at large times, for
small D and from a “macroscopic point of view”st@td we
can replace the initial system of Eq.(8) with the following
stochastic one:

ẋ = v,

mv̇ = −
]Vsxd

]x
+ D2xx − D2xqv + fstd, s13d

where fstd plays the role of an “effective” Gaussian stochas-
tic force with zero average and autocorrelation function
given by

kfstdfssdl = 2D2kj2l0tdst − sd, s14d

while q is the response time of the booster:

q ; E
0

`

csuddu. s15d

Thus, making the following identifications:
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Usxd ; Vsxd − D2x
x2

2
, s16d

mg ; D2xq, s17d

we recover the Langevin system of Eq.(2), with a tempera-
ture given by

kBT ; mkv2leq=
kj2l0t

xq
. s18d

At this point we have to choose a proper booster and the
reaction rate can be predicted by inserting Eqs.(16)–(18) in
Eqs. (1) and (4), or in the more accurate expression of Eq.
(7).

III. THE CASE UNDER STUDY

As already specified above, we use here, for the reactant
system, a quadratic potential with an absorbing(reaction)
point at x=x*: Vsxd=v2x2/2sm=1d, Eb=v2sx* d2/2. More-
over, due to the usual large reaction times(compared with
the relaxation time due to the friction), we use a booster very
“fast” to integrate: a shifted one-dimensional “tent” map, i.e.,

j= j̃−0.5, wherej̃stn+1d=g(j̃stnd), with (see Fig. 2)

gsj̃d =5 j̃

a
for 0 ø j̃ ø a

−
j̃ − a

1 − a
+ 1 for a , j̃ ø 1.6 s19d

For such a booster it is easy to obtain analytically[36] both
the correlation function and the susceptibility[that depend
on thea parameter in Eq.(19)]. The correlation function is
given by

wstd = e−t/t, s20d

t ; − 1/logs2a − 1d. s21d

In the numerical simulations we choosea=0.9917 which
leads to t=60. This value for the relaxation time, much
larger than one, let us to avoid the problems due to the dis-
crete time evolution of this booster.

The reactive oscillator frequencysvd used in the simula-
tion is equal to 5/3310−3, this ensures a large enough sepa-
ration between the time scale of the booster and that of the
system of interestsvt=0.1d. The invariant distribution of the

unperturbed variablej̃ is the uniform distribution in the in-

terval [0, 1], thereby resulting inkj̃l0=0.5, i.e.,kjl0=0, and

kj2l0=kj̃2l0−s0.5d2=1/12.
The perturbation of strengthKstd of this booster is here

defined as in[36], i.e., by the following additive quadratic

term to the tent map(see Fig. 2): Kstddgsj̃d, with

dgsj̃d ; H j̃sa − j̃d for 0 ø j̃ ø a

sj̃ − ads1 − j̃d for a , j̃ ø 1.
J s22d

The corresponding response functionSstd has been evaluated
in [36] and it is proportional to the correlation function:

Sstd =
a3 + s1 − ad3

6
wstd, s23d

from which we obtain

x ; E
0

`

Ssuddu=
a3 + s1 − ad3

6
t s24d

and

q = t. s25d

Applying a constant perturbationK to the booster, we find
that it responds linearly foruK u ,10−3, thus characterizing
the region of linear behavior.

The coupling of the booster with the system of interest is
realized by settingKstd=−Dxstd [see Eq.(8)].

Substituting Eqs.(24) and (25) in Eqs. (16)–(18) we ob-
tain:

Usxd = Vsxd − D2a3 + s1 − ad3

6
t

x2

2
, s26d

g = D2t2 a3 + s1 − ad3

6
, s27d

kBT =
kj2l0

t

6

a3 + s1 − ad3 . s28d

By inserting in Eq. (28) the values kj2l0=1/12 and a
=0.9917(from which t=60), we obtain a temperature given
by kBT=8.544310−3. The friction and the renormalization
of the reactive oscillator frequency depend on the coupling
constantD. The range of the allowed values for the coupling
constantD is evaluated in the following way: the booster
responds linearly forKstd,10−3;KM, thus, after the cou-
pling with the system of interest, the condition
sDxd2, sKMd2=10−6 must be fulfilled. Usingx2<kBT/v2,
where kBT=8.544310−3, this condition is rewritten as
D2/v2,10−4. The numerical calculations fulfill this condi-
tion. Notice that from this condition it follows that the renor-
malization of the frequency of the reactive oscillator intro-

FIG. 2. The tent map(solid line) and the perturbed tent map
(dashed line). The booster dynamics is given by a shift of this map:

j= j̃−0.5.
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duced by Eq. (26) is completely negligible, i.e.,Usxd
,Vsxd.

IV. THE REACTION RATE: NUMERICAL RESULTS

To solve numerically the problem of coupling the system
of interest, that evolves with continuity with time, with the
booster, that evolves with a discrete times step(that we call
u), we “transform” to a map the oscillator of interest too,
integrating the time evolution along the same time step:

xstn+1d = xstndcossvud +
vstnd

v
sinsvud,

vstn+1d = vstndcossvud − vxstndsinsvud. s29d

The coupling between this oscillator map and the booster
gives the following complete system that we use in the nu-
merical simulation:

xstn+1d = xstndcossvud +
vstnd

v
sinsvud

vstn+1d = vstndcossvud − vxstndsinsvud −
D

m
jstn+1d

j̃stn+1d = f„j̃stnd… − Dxstn+1ddf„j̃stnd…, s30d

where we setu=1su!1/vd.
In Fig. 3 we show the equilibrium distribution of the vari-

ablev obtained from the numerical simulation; it is evident
that it is a Gaussian function with a width given by the
theoretical temperature of Eq.(28). The agreement between
the theoretical prediction and the numerical result is quite
good. We are now ready to check the realization of the

Arrhenius law with this system. Each time that a single tra-
jectory reaches the sink inx* we increase by one unity the
numbern of reactions, and we store it in an array together
with the current time. Then we plot the arrayn versus the
time and we obtain the reaction ratek as the slope of the
resulting straight line divided by the number of samples of
our ensemble. In Fig. 4 two curvesnstd obtained in this way
for two different values of the coupling constantD are com-
pared with straight lines with a slopek given by Eq. (7)
where the friction and the temperature are that given in Eqs.
(27) and (28), respectively. The same procedure is repeated
changing the reaction pointx*, i.e., for different barrier en-
ergiesEb. In Fig. 5 we plot these results.

FIG. 3. Equilibrium distribution function of the velocity ob-
tained from the numerical simulation(circles) of the systems in Eq.
(30), compared with a Gaussian function with a width equal to
8.544310−3 (dashed line), i.e., the theoretical temperature of Eq.
(28). The solid line is a fit from numerical results. In this simulation
we usedD=4.5310−5 and an ensemble of 1000 samples. Notice
the we setu=m=1, thus the units of the variables in the abscissa
and ordinate axes are here arbitrary.

FIG. 4. Comparison between numerical data and theoretical val-
ues of the normalized curves of escapes from the barrier. The values
of the coupling constant areD1=Î234.5310−5, D2=D1/Î2. The
value of the energy barrier isEb=3kBT, wherekBT=8.544310−3.
The average is over an ensemble of 1000 samples. The timet is the
number of iteration of the map of Eq.(30).

FIG. 5. Numerical and theoretical reaction rates vs the barrier
energy. The energy is changed choosing a different reaction point
x*, according to the formulax* = Î2Eb/v. The value of the cou-
pling constant isD=Î234.5310−5. The simple Arrhenius law is
that in Eq. (1) with Eq. (4). The average is over an ensemble of
1000 samples. The values in the abscissa axes are dimensionless
corresponding to the inverse of the number of the iteration of the
map of Eq.(30).
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V. CONCLUSION

The agreement between the theoretical prediction and the
simulation is very good. Our few dimensional deterministic
booster is almost indistinguishable from a true thermal bath,
with a temperature and diffusion coefficient predicted by
Eqs. (17) and (18). The result is so good that we had to
compare the numerical results with the very accurate expres-
sion of Eq. (7) for the reaction rate, rather than the more
approximate Arrhenius law of Eq.(1) with Eq. (4).

It should be noted that in a reaction process the local
shape of the stationary distribution is important not only
where the statistics is high, i.e., in the bottom of the well, but
also in the cue of the distribution, near the absorbing point: a
small deviation in the cue of the distribution results in a large
deviation in the value of the rate. Thus this is a strict test of
the theory, the rate depending on a fine level statistics. The
agreement between the predicted rate and the numerical data
shows how good the identification of our deterministic
booster with a thermostat is.

The approach of[10] allow us to shed light on the way to
link the regular behavior of macroscopic observables(like
the reaction rate) to the “chaotic” dynamics of the underlying
microscopic system. To continue to investigate in this direc-
tion starting from the general results of[10], in the next
paper we will study the reaction rate in the case where there
is not a strong scale separation between the relaxation time
of the boosterstd and the typical oscillation times1/vd of
the reactant system, thus only the long reaction time makes
“macroscopic” the reaction process. In this case, according to
[10], we will see that a resonance mechanism between the
booster and the system of interest is activated and the reac-
tion rate depends strongly on the typical frequency of the
reactant system(before the thermodynamics limit, i.e., for a
booster with a not too large number of degree of freedom).
This fact could contribute to explain some multiple time
scale reaction processes occurring in mesoscopic systems,
like in protein, the energy transfer in surface catalytic reac-
tions, the selective enzyme reaction kinetics, etc.
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