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Ordinary chemical reaction process induced by a unidimensional map
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In this paper we show the results of the numerical simulation of a “standard” reaction process obtained by
a “non standard” system: a reactant oscillg@tharmonic oscillator with an energy thresholdeakly inter-
acting with a unidimensional tent map. According to the paper by M. Bianucci, R. Mannella, B.J. West, and P.
Grigolini [Phys. Rev. E51, 3002(1995], the action of such a map on the reactant system should be equiva-
lent, in some sense, to that of a thermal bath, where the values of the temperature and of the friction depend on
the normalized correlation function and on the response function of the map. Here this prediction is confirmed
by the numerical simulation. The numerical results are fitted very well by an Arrhenius law with the predicted
temperature and friction values. Notice that this is a strict test of the theory because the reaction rate strongly
depends on the fine level statistics, i.e., a small deviation in the cue of the distribution would result in a large
deviation in the value of the rate.
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[. INTRODUCTION barrierEy, then the reaction rate is well described by Eq.
In the limit of low friction or viscosity, where Brownian

The rate of a real standard chemical reaction process in Rrces do not alter substantially the energy of the reactants

solvent is well described by the Arrhenius-like structure during the course of the reaction, Kramers predicts that the

E, constant A,” and then the rate, will increase proportionally
k=Aex T ( with viscosity. In contrast, in the limit of high viscosity,
B Kramers predicts that reaction rates are inversely propor-
whereE, is the minimum energy required for the reaction totional to 7.
take place;T the solvent temperature, aikg the Boltzmann The Kramers theory applies to a very large variety of
constant. This “transition state structure” is essentially decases, stemming from physics, chemical-physics, biology,
rived by establishing a contact with equilibrium statistical etc., e.g., photoisomerization reactions like trans-stilbene and
mechanicq1] and by assuming, according to the transitionrelated compounds in liquid-alkanes anah-alkanols over a
state theory, that the population of all reactants can be dewide pressure ranggg], diffusional barrier crossing in two-
scribed by the canonical equilibrium ensemble. state protein folding reactions, like the folding dynamics of
The usual picture of a reaction process is that of a particléghe cold shock protein Csppl] or the formation of3 sheet
(the reactantin a potential well that reacts escaping from the or « helix [5], catalytic reaction rates at solid surfagés7],
well by jumping over a barrier of heiglt, (see Fig. . The  etc.
solvent is assumed to be a thermostat, which is the source of Kramers also obtained the analytical explicit value of the
the temperaturd and of the statistical properties that give constant A” for the case of low friction and the case of
rise to the Arrhenius-like structure of E(L). intermediate and strong friction. He could not obtain the ana-
Kramers, in a well-known work2], obtained Eq.(1) Iytic solution for the turnover regime between these two
starting from the Langevin dynamical picture:

VA
X=v,

AU(X) Eppromemmenneeeog ;

mv =-———-my +f(t), 2 :

v X w + () (2 :

whereU(x) is a reaction potential characterized by the bar- TksT

rier E, (Fig. 1) and f(t) is a Gaussian white noise, with ;
vanishingstatistical mean value, defined by : -

x* X

(f(H)f(s)) = 2mykgTo(t - 9). (3)

Kramers demonstratd®] that when the temperatuigT of
Eq. (3) is low if compared with the value of the energy

FIG. 1. Schematic drawing of a typical reaction potential in
arbitrary units. The reactants are the particles with “coordinate”
less tharx*. The reactants move under the influence of the potential
U(x) and of the thermal bath. When a reactant reaches the point
the chemical reaction takes place and it disappears. Xhis an
*Email address: bianucci@fis.unipr.it absorbing point ané, is the corresponding energy barrier.
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cases, and we had to wait more than 50 years to have a quibeen proposefll5-21. Moreover, in[22] a generalization to

general unified treatmen8]. non-Hamiltonian systems of the usual Hamiltonian phase
In the present paper we limit ourself to the underdampedpace analysis has been applied to these models, to include
limit (low friction), for which the Kramers result is them in the general framework of the standard statistical me-
I(Ey) o chanics theory. _
A= y—b—o, (4) However, though these systems are very useful in molecu-
keT 277 lar simulations, it is a difficult task to link them to what

should be a real microscopic model, for two main reasons:
(1) the temperature is still inserted by hand, and
(2) in the “extended” phase space, where we can recover
I(E) = fﬁ modx, (5) a Hamiltonian structure, the dynamics of the “thermal bath”
depends directly on the kinetic energy of the relevant system,
and wo/27 is the frequency at the bottom of the potential instead of depending on the coordinate variables as in real

wherel(E) is the action, defined by

well: systems.
Our approach here and [40] is quite different: our task
wp o(l) o w(l)  OE . X " :
—= —| ,with—=—. (6) is not to find a competitive model to be used in computer
2w 27 |12 27 dl

molecular dynamics simulations, but to contribute to shed-

Actually, from Eq.(2), in the underdamped regime, a more ding a light on understanding the link between the dynamical
accurate expression for the reaction riatean be obtained Properties of the deterministic microscopic systems and the

[9] [B=1/kgT,l,=1(Ep)]: dynamical and equilibrium properties emerging when ob-
| | ) ) serving them at a macroscopic scale. More precisely, we are

k= ok T[J "l extl- ,BE(I)]J bdl,ﬁeXF[BE(l )] looking for the key properties of the microscopic “irrelevant”

®1 s | 2w I’ ’ system, and of the interaction of it with the variables of

interest, necessary for the setup of a standard fluctuation-
(@) dissipation process. A first step toward this goal was already
which reduces to the Kramers expression in the limit of highdone in paper§23-25, where, however, two main points
activation energy(8E,> 1). make them weak:

In substance, the Langevin picture consists of a way of (1) the dynamics of the “thermal bath” depends on the
representing a thermostat. In fact in E8) the thermostat is  Velocity variable of the system of interggtstead of depend-
represented by the two forces that act on the reactant oscil?d on the coordinate, as in any reasonable interaction poten-
lator: the friction -myv and the Gaussian stochastic forcetial); and _ )

f(t). The Gaussianicity of the stochastic force ensures the (2) there is not a defined time scale for the system of
“correct” fluctuation properties of the system, the friction is Interest.

responsible for its relaxation behavior, and the intensity of

the stochastic force, assigned by the relaxation-fluctuation

relation in Eq.(3), introducesby handthe temperature in the Il. ASHORT REVIEW

system. Therefore the stochastic Langevin picture rests on a
phenomenologicalnot microscopit description of the ther-
mostat. We could also say that the Langevin equation defin

In paper[10], which reports and generalizes the results of
(%apers[26—2q, the Fokker-Planck or Langevin type trans-

: PR . ._port equation from the underlying microscopic dynamics is
¥yhat ? th?r:mostai Its. Thlisbanyt :?‘?I TICFOSQOp:C ?isc?ﬁ'explored, exploiting the simple case of a system composed
lon of a thermostat must be statisically equivalent 10 €y o rejayant one degree of freedom oscillator coupled to an
Langevin picture from the point of view of the system of

) ) irrelevant multidegree of freedom system through a weak
interest(here the reactantWith the present paper we want interaction of streggth& [10]: y ¢
to check how good the microscopic model for the thermostat '

proposed in papefl0] is by studying the reaction process X=v,
induced by the action of such a model over a reactant oscil-
lator. _ N(X)
Notice that about 20 years ago it was shown that if we let mo = - —— — A¢,
interact in a special way the system of interest with variables x
whose dynamics depends in a proper way on the kinetic en- )
ergy of the system, we havén the ergodic cagethat the E=F(¢m,— AX),
distribution of the system of interest “relaxegih some
sens¢ to the canonical equilibrium distributiof11-13. = G(&m,— AX), (8)

Moreover, the relaxation process follows the “standard” fluc-

tuations dissipation rules. Thus these artificial deterministievhereV(x) is the potential of the oscillator of interefsts we
systems, now called Nosé-Hoover systems, are very impowill show later, it is practically indistinguishable frotd(x)
tant in the field of molecular dynamics, where they can effi-of Eq. (2)] and ¢, (=, ...,m1) are the variables of the
ciently replace the action of a thermosa#l]. More recently  n-dimensional irrelevant system that we call “booster”
a number of modifications to the Nosé-Hoover systems havgl0,26—-29 (the “thermostaty.
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From Eq.(8) we see that the booster exerts an action on t
the oscillator of interest through the term\&/m (action. (k) *f S(WK(t-u)du (11)
The oscillator reacts badkeactior), and this is expressed by 0

the dependence df and G on the term Ax. If the third  \hereS(u) is the response function axid -)(t) indicates the
argument of the functions andG is equal to zero we say ayerage at timet over the distribution of the perturbed
that the _booster is “unperturb_ed,” otherwise we say tha_t thegoster, starting from the unperturbéd=0) equilibrium
booster is “perturbed.” Thus in E@8) the perturbation is  gistribution att=0. This means that if we perturb the booster
given by the term Ax. _ with a constantfield of intensityK (i.e., K does not depend
y Thﬁ ggnelr)al s;[ructure Iglf !E(:.[(S) |rt1_clude?ht:1he caste of fon time, we can write (&c(D)=Kx(t), where x(t)
amiltonian boosters weakly interacting wi e system of_ - : -
interest, where the interaction potential is expanded in Tayloﬁof%siz)rgu'a:&i ?r:ji;(axlafig]bele“:t)(l))((ttg ésvzlagilo?m;h;t tigrr? ;as
series up to the first term in the coupling paraméi€tinear t=oo Intro'ducin the functiom:('t) defined b X
interaction. Of course, the Hamiltonian case is the most in- ' 9 ’ y

teresting one and it Was_analyzz_ed in pa_[:ﬂsﬁ]. Following a X =[1-ct)]y, (12)
procedure close to that if10], this case is also explored in | )
more recent papef80—37. it is evident thatc(0)=1, c()=0, andS(t) =—ydc(t)/ it.

The structure of Eq(8) is also compatible with non- Notice that the linear response of a “chaotic” booster to a

Hamiltonian dynamical systems, often used to model the dyWeak perturbation is a quite general property and, as shown
namics at “mesoscopic” scale. Given a specific nonJn Paperg33,34, the response function can usually be evalu-
Hamiltonian system compatible with E@), it could be also ~ ated following an approach “a la Kub¢35].

possible to apply the procedure of paf2®] to construct the ~ There are three cases where the procedure of gaogr
distribution function sampled by the variables of interest, and/i€lds to a standard statistical mechanics:

verify the emergence of standard equilibrium statistical prop- (1) Large separation between the time scale of the
erties. Note, however, that our approach is quite general bitooster(order of 7) and the typical oscillation timel /) of
perturbative, this means that the distribution function of thethe system of interest, i.ew7<1; V(x): any; number of
booster(that depends on the position in the phase space dlegree of freedom of the booster: any.

the variables of the system of interestust be always close  (2) V(XY)=w’%?/2, i.e., the system of interest is a har-
to the unpertururbed one. This condition must be checkeéonic oscillator;w and 7: any (notice, however, that a reso-
case by case in the phase space analysis of the equilibriun@ncew= 7 could break the assumption of weak interaction

distribution. between the booster and the system of intgrestmber of
The booster, to act as a thermostat, has to fulfill two im-degree of freedom of the booster: any.
portant dynamical propertig4.0]: (3) Large number of degree of freedom of the boosier;
(i) Its correlation function, in the unperturbed case, mus@nd 7: any; V(x): any.
decay in a finite time, i.e., ifp(t) is the normalized unper- In this paper we assume to be in the first case. This means
turbed autocorrelation function of the variallle that the present procedure could be applied to a wide variety

of complex reaction dynamics, with real potentials, such as,
for example, protein folding reactions. However, for the sake
of simplicity, we will limit ourself considering only the case
of harmonic potentials.

At this point, as it is shown ifl10], at large times, for
small A and from a “macroscopic point of viewt> 1) we
we need to have can replace the initial system of E() with the following

stochastic one:

_ (EEO)

o(t) = @ 9)

* X=v,
T= f o(t)dt < oo; (10)
i —M+A
X

my = 2yx = A%xdv +1(t), (13

where the symbaf - -), indicates the average over the unper- ; o .

turbed (A=0) equilibrium distribution of the booster, WHeref(t) plays the role of an “effective” Gaussian stochas-
. . tic force with zero average and autocorrelation function

Throughout this paper we assume, without any loss of 9enzen b

erality, that the unperturbed average of the varigbt# the 9 y

booster vanishes, i.6&),=0. (F(1)f(9)) = 20X )7t - 9), (14)

(i) The booster responds linearfin a statistical senge
to a weak perturbation. More precisely, we assume that if aV
time t=0 we perturb the booster with an external fi&l@) s f"

hile % is the response time of the booster:

[K(t) is in place of the perturbationAx in Eq. (8)], the c(u)du. (15

average of¢é moves from zero to a value that can be well
approximated by a linear function of the perturbation, i.e., Thus, making the following identifications:

0
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o

E(tn)

FIG. 2. The tent magsolid line) and the perturbed tent map
(dashed ling The booster dynamics is given by a shift of this map:

E=¢-0.5.

2

U(X) = V() — A%X‘E, (16)

my = A%y, (17)

we recover the Langevin system of K&), with a tempera-
ture given by

<§2>o7'_

keT = m(v2>eq: 20

(18)

At this point we have to choose a proper booster and the

reaction rate can be predicted by inserting E4§)—(18) in

Egs. (1) and (4), or in the more accurate expression of Eq.

(.
Ill. THE CASE UNDER STUDY

As already specified above, we use here, for the reactah

system, a quadratic potential with an absorbingaction
point atx=x*: V(X)=w?x?/2(m=1), E,=w?(x*)?/2. More-
over, due to the usual large reaction tinfesmpared with
the relaxation time due to the frictiprwe use a booster very

“fast” to integrate: a shifted one-dimensional “tent” map, i.e.,

£=¢-0.5, where~§(tn+l):g(~§(tn)), with (see Fig. 2

£ for0<é<a
~ o
9gé=\ - (19
(-a ~
- +1 fora<és<l.
l-«

For such a booster it is easy to obtain analyticfig] both
the correlation function and the susceptibilityat depend
on thea parameter in Eq(19)]. The correlation function is
given by

~t/r
1

et)=¢€ (20)

7=-1/log2a - 1). (21)

In the numerical simulations we chooge=0.9917 which
leads to 7=60. This value for the relaxation time, much

PHYSICAL REVIEW E 70, 026107(2004

The reactive oscillator frequendw) used in the simula-
tion is equal to 5/ 1073, this ensures a large enough sepa-
ration between the time scale of the booster and that of the
system of interestwr=0.1). The invariant distribution of the
unperturbed variablé is the uniform distribution in the in-

terval [0, 1], thereby resulting ir{zf>o=0.5, i.e.,(&€0=0, and

<§2>0:<§2>0_(0-5)2: 1/12.
The perturbation of strengti(t) of this booster is here
defined as inN36], i.e., by the following additive quadratic

term to the tent maysee Fig. 2 K(t)5g(§), with

Ha-9
(F-a)(1-¢ fora<é<1.

forOsEs a

59(8) = (22)

The corresponding response functig() has been evaluated
in [36] and it is proportional to the correlation function:

3 1- 3
S = %qo(t), (23
from which we obtain
o 3 _ 3
XEJ S(u)du:wr (24)
0
and
d=r. (25)

Applying a constant perturbatiol to the booster, we find
that it responds linearly fojK| <1073, thus characterizing
the region of linear behavior.

The coupling of the booster with the system of interest is
tlealized by settind<(t)=-Ax(t) [see Eq(8)].

Substituting Eqs(24) and (25) in Egs.(16)—18) we ob-
tain:

3 _ 3 2
U(X) = V(X) - A2“+(+“)T XE (26)
. 3
y=a22 % +(é ;. 27
2.
oT= o0 (28)

r B+(1l-a)¥

By inserting in Eq.(28) the values(&),=1/12 and «
=0.9917(from which r=60), we obtain a temperature given
by ksT=8.544x 1073, The friction and the renormalization
of the reactive oscillator frequency depend on the coupling
constantA. The range of the allowed values for the coupling
constantA is evaluated in the following way: the booster
responds linearly foK(t) <103=K,,, thus, after the cou-
pling with the system of interest, the condition
(AX)?><(Ky)?=10"° must be fulfilled. Usingx®=~kgT/w?,
where kgT=8.544x 1073, this condition is rewritten as
A?/ w?>< 1074 The numerical calculations fulfill this condi-

larger than one, let us to avoid the problems due to the distion. Notice that from this condition it follows that the renor-

crete time evolution of this booster.

malization of the frequency of the reactive oscillator intro-
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02+ | o Numerical results (A=A,)

© Numerical results( A=A;)
— Fit from numerical results
- — — Theoretical predictions

0.1+

n(t) I N(t)

T T T U
0 20 40 60x10 t

0 -0.2 0.0 0.2 v

FIG. 4. Comparison between numerical data and theoretical val-
FIG. 3. Equilibrium distribution function of the velocity ob- ues of the normalized curves of escapes from the barrier. The values
tained from the numerical simulatiquircles of the systems in Eq.  of the coupling constant ar&;=y2x4.5x10°°, A;=A,/+2. The
(30), compared with a Gaussian function with a width equal tovalue of the energy barrier &,=3kgT, wherekgT=8.544x 103,
8.544x 1072 (dashed ling i.e., the theoretical temperature of Eq. The average is over an ensemble of 1000 samples. Thet isrtbe
(28). The solid line is a fit from numerical results. In this simulation number of iteration of the map of E¢30).
we usedA=4.5x107° and an ensemble of 1000 samples. Notice
the we setd=m=1, thus the units of the variables in the abscissa
and ordinate axes are here arbitrary. Arrhenius law with this system. Each time that a single tra-
jectory reaches the sink ix* we increase by one unity the
duced by Eq.(26) is completely negligible, i.e.U(x) numbern of reactions, and we store it in an array together
~V(X). with the current time. Then we plot the arrayversus the
time and we obtain the reaction rateas the slope of the
resulting straight line divided by the number of samples of
IV. THE REACTION RATE: NUMERICAL RESULTS our ensemble. In Fig. 4 two curvest) obtained in this way
for two different values of the coupling constaktare com-
pared with straight lines with a slope given by Eq.(7)
where the friction and the temperature are that given in Egs.
(27) and (28), respectively. The same procedure is repeated
changing the reaction point, i.e., for different barrier en-
ergiesk,. In Fig. 5 we plot these results.

To solve numerically the problem of coupling the system
of interest, that evolves with continuity with time, with the
booster, that evolves with a discrete times dtiyat we call
0), we “transform” to a map the oscillator of interest too,
integrating the time evolution along the same time step:

v(t,) .
X(th41) = X(t,)cogwb) + (t sin(w#),
w
_ \\'\ T Numerical results with
U(the1) = v(t,)codwb) — wX(t,)SiN(wb). (29 ; 21 N statistical errors
—— Theoretical predictions
The coupling between this oscillator map and the boostere - ——- Simple Arthnius law
gives the following complete system that we use in the nu-
merical simulation:
107
u(t,) .
X(te1) = X(t,)cOd w) + (t) sin(wb) g
o |
74
A 6
v(th1) = v(ty)cogwb) — wx(ty)sin(wb) - ag(tml) 54

3 4 Ep!kgT 5

E(ter) = FCE)) = AX(t,0) SF (&), (30)
FIG. 5. Numerical and theoretical reaction rates vs the barrier

where we sep=1(¢<1/w). o _ energy. The energy is changed choosing a different reaction point
In Fig. 3 we show the equilibrium distribution of the vari- y+ according to the formulac* = V2E,/w. The value of the cou-

ablev obtained from the numerical simulation; it is evident pjing constant isA=12x 4.5x 10°5. The simple Arrhenius law is

that it is a Gaussian function with a width given by the that in Eg.(1) with Eq. (4). The average is over an ensemble of
theoretical temperature of ER8). The agreement between 1000 samples. The values in the abscissa axes are dimensionless
the theoretical prediction and the numerical result is quitecorresponding to the inverse of the number of the iteration of the
good. We are now ready to check the realization of themap of Eq.(30).
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V. CONCLUSION The approach of10] allow us to shed light on the way to

The agreement between the theoretical prediction and thik the fegu'ar beha\{llor of-n:acroscc.)plc observat(ldeg
simulation is very good. Our few dimensional deterministic '€ réaction rateto the “chaotic” dynamics of the underlying
booster is almost indistinguishable from a true thermal bathMICroscopic system. To continue to investigate in this direc-
with a temperature and diffusion coefficient predicted bytion starting from the general results p0], in the next
Egs. (17) and (18). The result is so good that we had to Paper we will study the reaction rate in the case where there
compare the numerical results with the very accurate expreds Not a strong scale separation between the relaxation time
sion of Eq.(7) for the reaction rate, rather than the more Of the booster(7) and the typical oscillation time¢l/w) of
approximate Arrhenius law of Eql) with Eq. (4). the reactant system, thus only the long reaction time makes

It should be noted that in a reaction process the locafmacroscopic” the reaction process. In this case, according to
shape of the stationary distribution is important not only[10], we will see that a resonance mechanism between the
where the statistics is high, i.e., in the bottom of the well, butbooster and the system of interest is activated and the reac-
also in the cue of the distribution, near the absorbing point: dion rate depends strongly on the typical frequency of the
small deviation in the cue of the distribution results in a largereactant systentbefore the thermodynamics limit, i.e., for a
deviation in the value of the rate. Thus this is a strict test ofoooster with a not too large number of degree of freedom
the theory, the rate depending on a fine level statistics. Th&his fact could contribute to explain some multiple time
agreement between the predicted rate and the numerical degeale reaction processes occurring in mesoscopic systems,
shows how good the identification of our deterministiclike in protein, the energy transfer in surface catalytic reac-
booster with a thermostat is. tions, the selective enzyme reaction kinetics, etc.
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